Синтез бамбукоподобных углеродных нанотруб и теоретическое моделирование их физических свойств

О. Е. Глухова

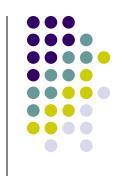
Саратовский государственный университет им. Н.Г.Чернышевского, физический факультет

glukhovaoe@info.sgu.ru

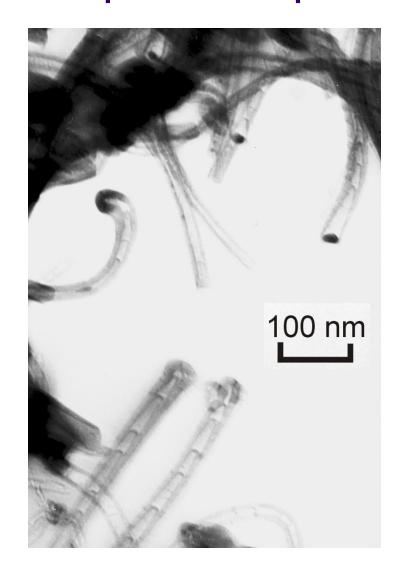
З.И.Буянова, Г.В. Торгашов

Саратовский филиал

Института радиотехники и электроники РАН



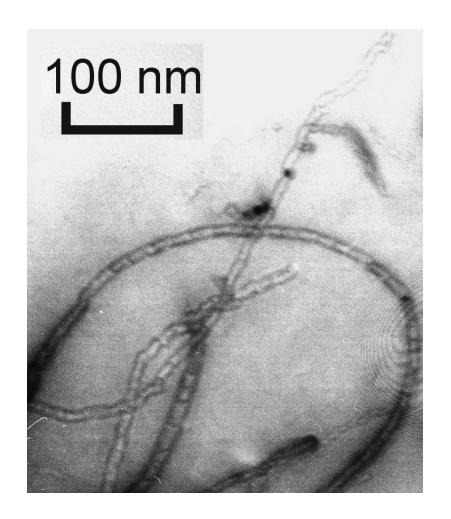
Два типа углеродных бамбукоподобных нанотрубок (УБНТ)

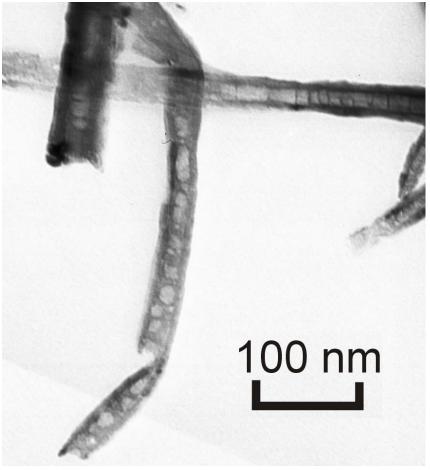


- УБНТ первого типа: многослойные структуры - вложенные друг в друга конусы
- УБНТ второго типа: полые одноили многослойные нанотрубки с внутренними перегородками

УБНТ первого типа

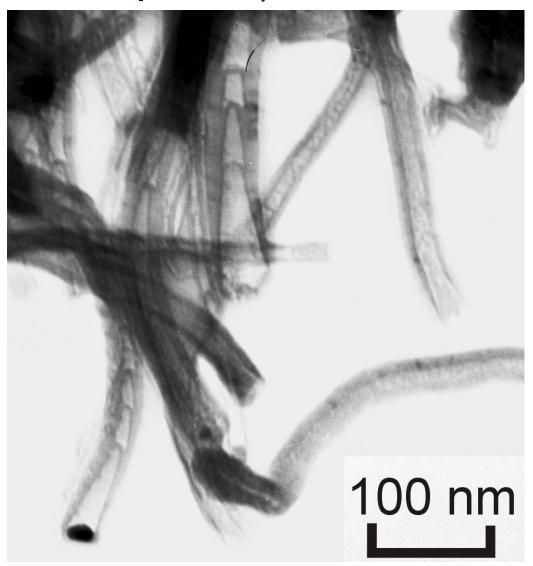
(снимки сделаны с помощью просвечивающего электронного микроскопа)





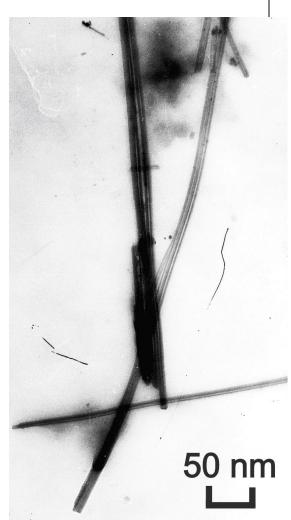
УБНТ второго типа

(снимки сделаны с помощью просвечивающего электронного микроскопа)

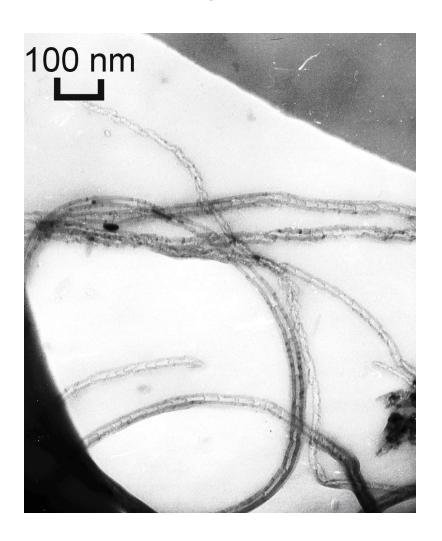


УБНТ первого и второго типов

(снимки сделаны с помощью просвечивающего электронного микроскопа)


Исходные образцы с УНТ несложных форм

1этап

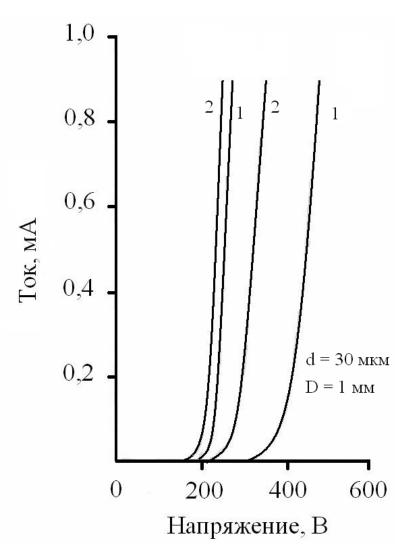

Исходные образцы производятся плазмо-химическим способом на кремниевых подложках с подслоем хрома и железным катализатором.

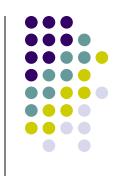
Плазмохимическое травление проводится на полуавтомате плазмохимической обработки пластин «Плазма 600Т».

Бамбукоподобные нанотрубки

2 этап

Пленки с УНТ несложных форм подвергаются обработке одинаковой высокочастотной плазмой в кислородной среде (давление кислорода — 0,8 мм.рт.ст.) в течение 20, 30, 40 или 60 с.

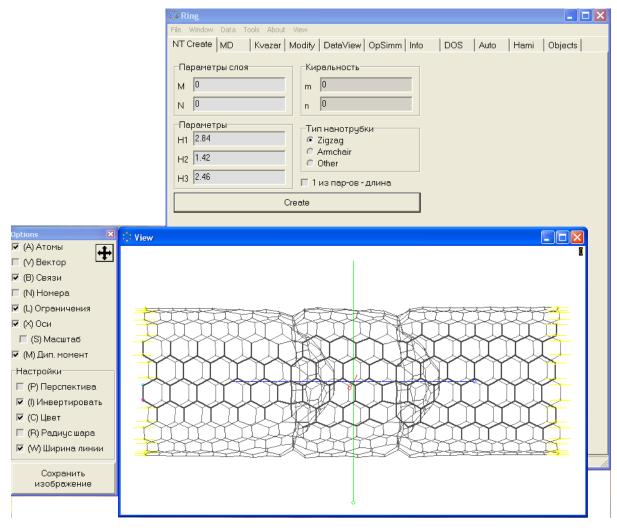

Эмиссионный ток травленной и нетравленой пленок с ДНТ при использовании слоя катализатора различной толщины


N	Толщина катализатора,	До травления		После травления в течение 40 с		
	НМ	<i>F</i> В/мкм	A/cm ²	<i>F</i> В/мкм	A/cm ²	
1	7	9,51	127	8,27	254	
2	7	21	6,3	18,33	50,9	
3	7	17,6	3,8	12,3	101	
3	14	20,4	6,3	14,9	56	
5	14	10,3	127	6,6	63	
6	14	10,78	101	7,66	127	
7	21	5,88	127	14,31	38,2	
8	21	18,6	3,2	10	266	

Вольтамперные характеристики

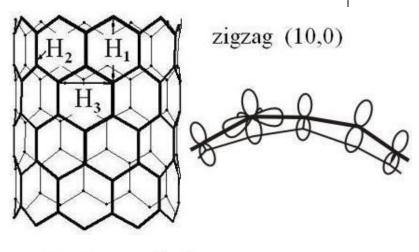
- ВАХ пленок с УНТ (пленок до травления в кислородной среде)
- и с УБНТ (после травления)

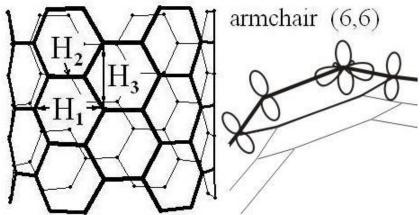
Выводы по применяемой технологии

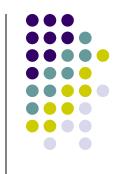


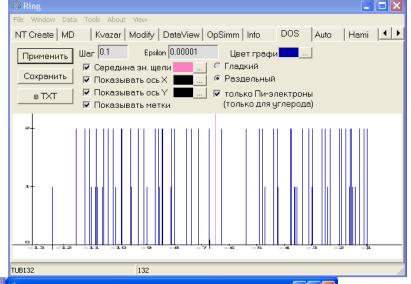
- Плазмо-химическое травление позволяет регулировать высоту нанотрубок, проводить чистку межтрубных пространств от углеродистых и других модификаций, карбида железа, железа и удалять металлические колпачки.
- Обработка кислородной плазмой стабилизирует токи, заметно снижает напряженность поля при токе 50 мкА и повышает плотность тока эмиссии.

(Такие же результаты дал отжиг нанотрубных углеродных пленок на воздухе в течение 15 минут при температурах 600 С, 700 С.)




- Пакет вычислительных программ Ring
- О.А.Терентьев Кандидатская диссертация.
 Саратовский госуниверситет,
 Саратов, 2007,
 151 с.


Генерирование координат нанотрубок


- Трехпараметрический метод воспроизведения углеродной сетки УНТ
- О.Е.Глухова,О.А.Терентьев Теоретическое изучение зависимостей модулей Юнга и кручения тонких однослойных углеродных нанотрубок zigzag и armchair от геометрических параметров // Физика твердого тела, 2006, т.48,№.7, с.1329-1335.

Расчет электронной структуры УНТ

: View 🔽 (А) Атомы 🔽 (В) Связи 🥅 (N) Номера 🔽 (L) Ограничения √ (Х) Оси 🔽 (М) Дип. момент Настройки ✓ (Р) Перспектива. ✓ (I) Инвертировать √ (С) Цвет (R) Радиус шара √ (W) Ширина линии Сохранить

изображение

 Расчет электронной структуры проводится при помощи метода сильной связи с оригинальной параметризацией характерных параметров

Схема расчета энергии наносоединения

$$E_{sum} = E_k^{bond} + E^{rep}$$

N – количество кластеров

$$E^{\text{rep}} = \sum_{l < i}^{Natom} \left(p_5 \left(\frac{p_3}{r_{li}} \right)^{p_6} exp \left\{ p_6 \left[-\left(\frac{r_{li}}{p_2} \right)^{p_4} + \left(\frac{p_3}{p_2} \right)^{p_4} \right] \right\} \right) -$$

энергия межатомного взаимодействия

Е вол – энергия занятых уровней

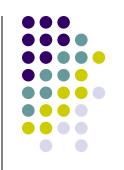
$$V_{ab\alpha}(r) = V_{ab\alpha}^0 \left(\frac{p_3}{r}\right)^{p_1} exp \left\{ p_1 \left[-\left(\frac{r}{p_2}\right)^{p_4} + \left(\frac{p_3}{p_2}\right)^{p_4} \right] \right\},$$

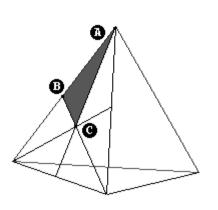
a, b – орбитальные моменты волновых функий, α определяет тип связи (σ или π)

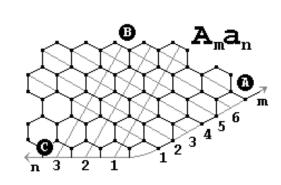
Характерные параметры метода

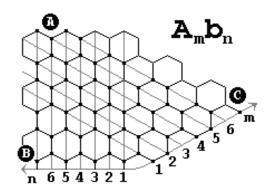
(О.Е.Глухова Канд.дис.СГУ, Саратов, 1997, 204 с.)

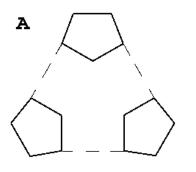
Атомные термы углерода и равновесные интегралы перекрытия (эВ)

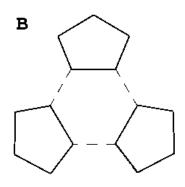

+‡+						
	€ 💈	ϵ_p	$v_{ss\sigma}^0$	$v_{\rm sp\sigma}^0$	$V_{\rm pp\sigma}^0$	$V_{pp\pi}^0$
	-10.932	- 5.991	-4.344	3.969	5.457	-1.938

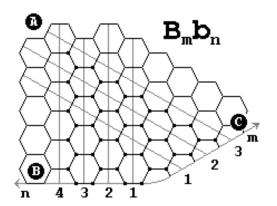

Параметры р, функций, описывающих энергию межатомного взаимодействия

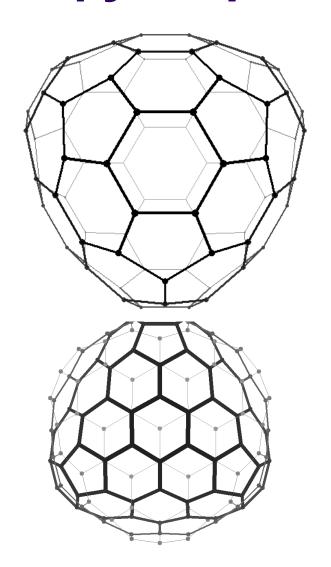

Связь	p_1	p _{2,} , A	p ₃ , A	p_4	р ₅ , эВ	p_6
С-С	2,796	2,32	1,54	22	10,92	4,455

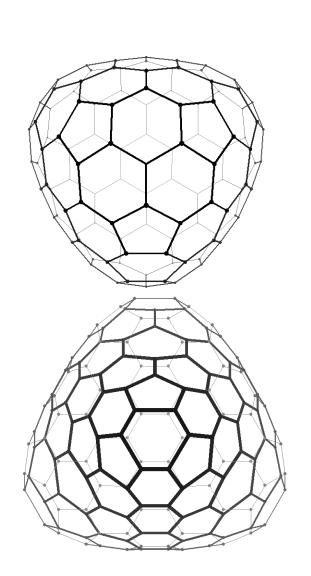

Генерирование координат фуллеренов


Топологические модели тетраэдрических фуллеренов



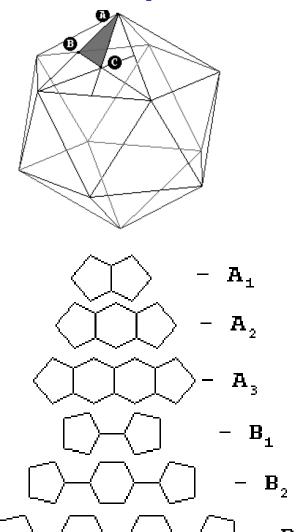


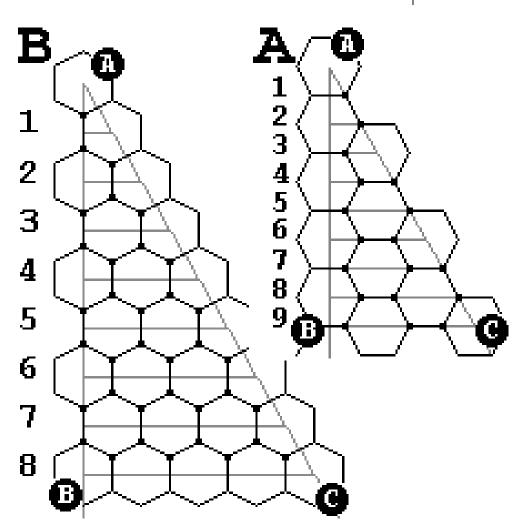




Некоторые стабильные фуллерены *Td*

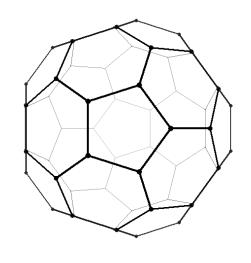


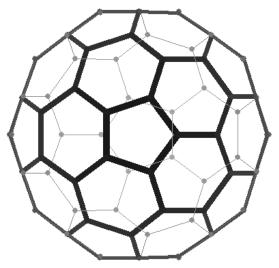


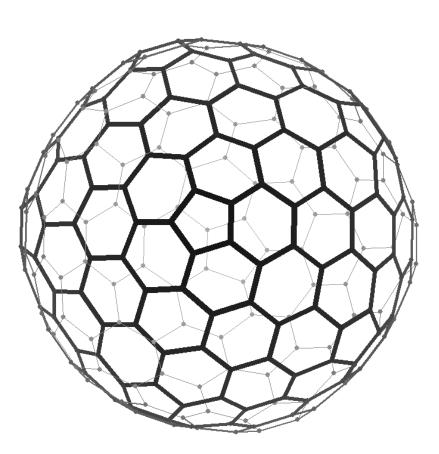


- C₈₄
 C₁₁₂
 C₁₂₄
 C₁₆₈

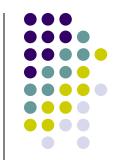
Топологические модели иксосаэдрических фуллеренов





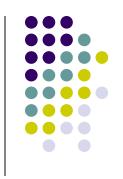


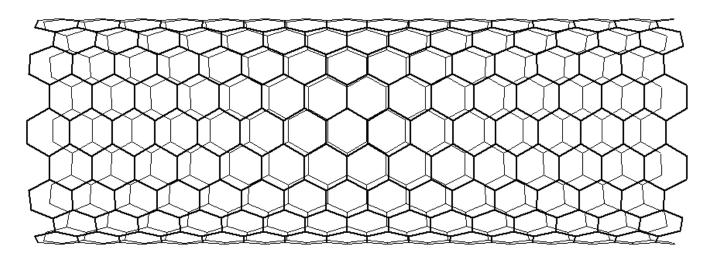
Некоторые стабильные фуллерены *lh*



- \mathbf{C}_{60}
- C₈₀
- C_{240}

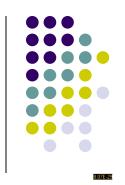
Стабильность фуллеренов

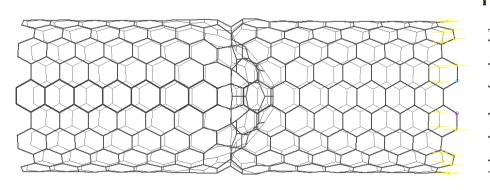

(О.Е.Глухова, А.А. Дружинин, А.И. Жбанов, А.Г. Резков *Структура* фуллеренов высоких групп симметрии // Журнал структурной химии.

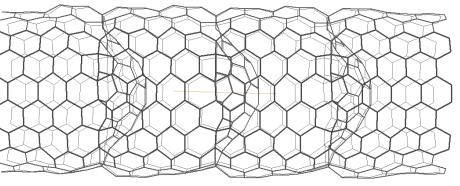


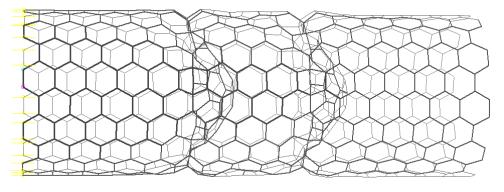
2005. том 46, № 3. С.514-520)

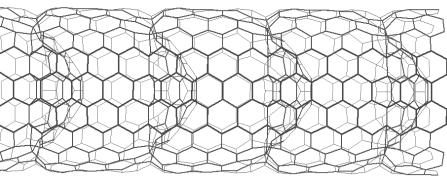
- Среди тетраэдрических стабильны фуллерены класса $A_{\rm m}a_2$ (m > 1), $A_{\rm m}b_2$ (m > 1), а икосаэдрических $A_{\rm n}$ (n>1), $B_{\rm n}$ (n любое положительное целое число).
- Стабильные тетраэдрические фуллерены характеризуются следующей ориентацией пентагонов: группы из трех несмежных пентагонов направлены вершинами к оси симметрии третьего порядка (расстояние до оси может быть любым) и при этом соседние группы должны быть разделены пятью гексагонами или одним.
- Среди икосаэдрических фуллеренов все представители класса B_n являются стабильными.
- Единым признаком стабильности икосаэдрических фуллеренов является *исключительно изолированность пентагонов* и других особенностей топологии каркаса нет.

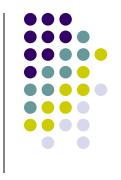

Моделирование бамбукоподобных нанотрубок второго типа

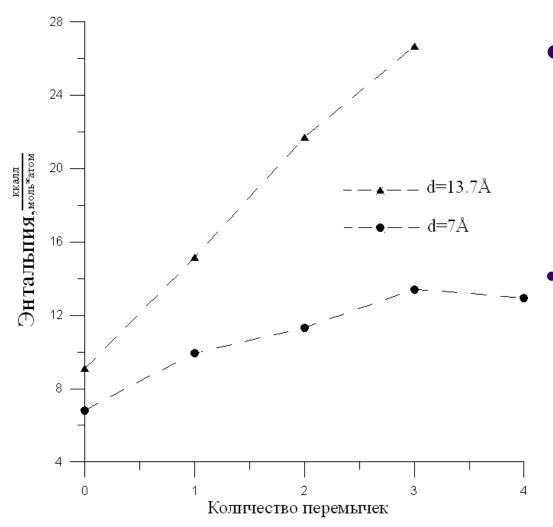






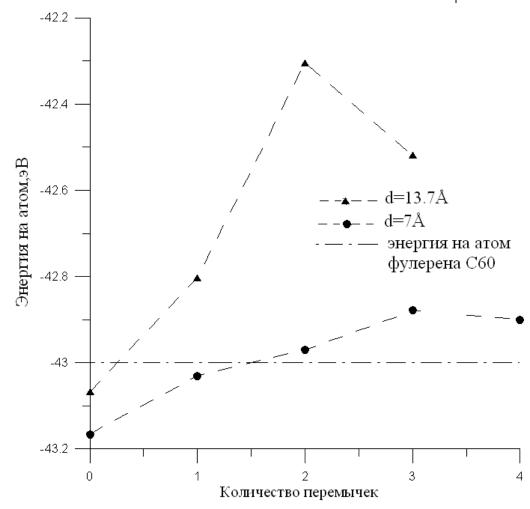

Трубка (10,10) с перегородками



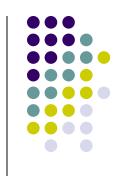

Геометрические и энергетические параметры УБНТ на базе (10,10)

УНТ и УБНТ	R, Å	L, Å	ІР,эВ	ΔE_{g} , ∂B	Еат, эВ	∆Hof, ккал/ моль*атом	P, D
без перемычек	6,74	40,5	6,30	0,1	-43,16	6,83	0
1 перемычка	6,81	37,73	6,30	0,25	-43,01	9,42	29
2 перемычка	6,79	37,49	6,10	0,02	-42,88	11,34	147
3 перемычки	6,90	37,28	6,24	0,12	-42,77	13,42	24
4 перемычки	6,78	37,05	6,70	0,63	-42,67	12,94	87

Стабильность УБНТ



- Более среди УБНТ 2-го типа стабильны и энергетически выгодны трубки диаметром 1нм и более
- О.Е.Глухова , А.С.Колесникова, О.А.Терентьев Теоретическое исследование упругости бамбукоподобных нанотрубок // Физика волновых процессов и радиотехнические системы. № 2 (in press)

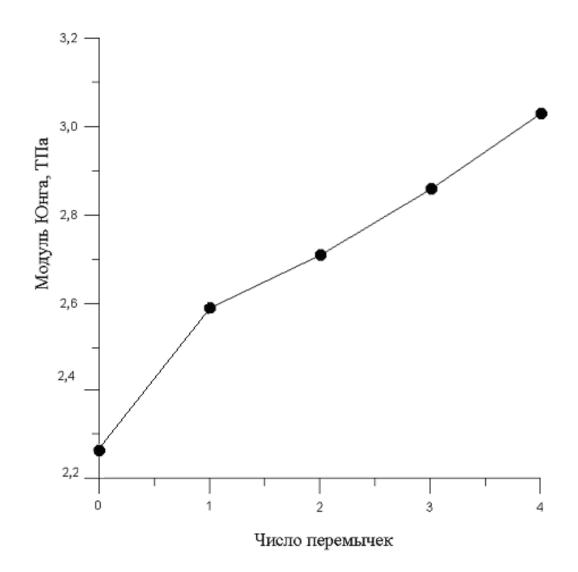

Энергия, приходящаяся на атом УБНТ

Среди рассмотренных моделей УБНТ (10,10) с двумя перемычками (расстояние ~1 нм) отличаются меньшим значением ІР, узкой щелью и наибольшим дипольным моментом

Упругость бамбукоподобных нанотрубок

- Генерируются координаты УНТ и строится модель УБНТ
- Рассчитываются атомный каркас и энергия трубки в исходном (основном) состоянии
- Длина каркаса увеличивается (или уменьшается) на несколько процентов и фиксируется. По необходимым линейным параметрам снова оптимизируется геометрическая структура остова и вычисляется энергия вытянутого (или сжатого) кластера.

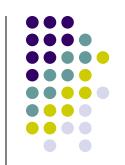
Расчет модуля Юнга

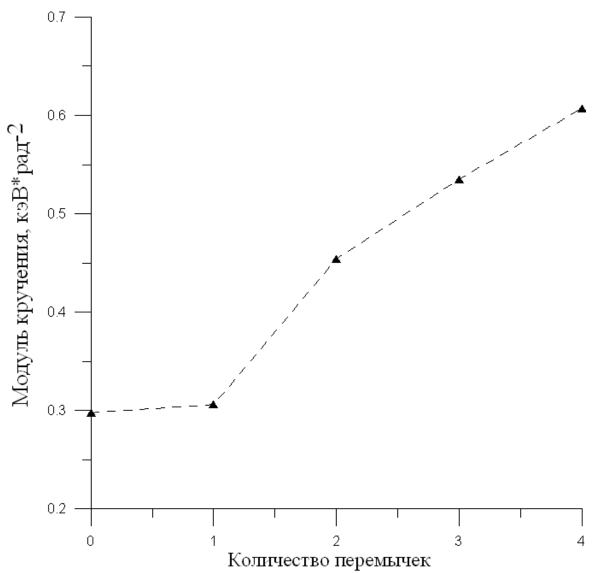


Модуль Юнга
$$Y=rac{F}{S}\cdotrac{L}{\Delta L}$$

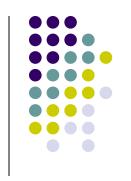
$$F = \frac{2 \cdot \Delta E}{\Delta L}$$

Изменение модуля Юнга


Модуль кручения



$$f_{\Delta E} = \frac{2 \cdot \Delta E}{\varphi^2}$$


Здесь ф – угол поворота концов нанотрубки относительно друг друга, ∆Е – изменение полной энергии нанотрубки.

Изменение модуля кручения УБНТ (10,10)

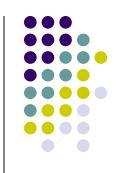
Молекулярно-механическая модель УНТ: изучение многоатомных нерегулярных нанокластеров

 В основе - модель валентного силового поля с учетом взаимодействия Ван-дер-Ваальса несвязанных атомов

$$E = \sum_{i} K_{r} (r - r_{0})^{2} + \sum_{i} K_{\theta} (\theta - \theta_{0})^{2} + \sum_{i} \left(\frac{K_{a}}{r^{12}} - \frac{K_{b}}{r^{6}} \right)$$

Кr, Кθ, Кa, Кb – весовые коэффициенты.

Поиск весовых коэффициент


 Весовые коэффициенты были найдены как решения минимаксной задачи с ограничениями в следующей постановке:

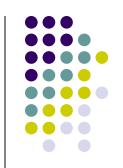
$$\min_{A} \max_{A} S(A)$$
, где $S(A) = \sum_{i=1}^{3} |r_i - r_i^0|$

$$\mathbf{A} = (\mathbf{K}_{r}, \mathbf{K}_{\theta}, \mathbf{K}_{a}, \mathbf{K}_{b})$$

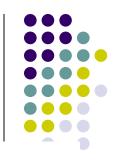
- вектор варьируемых параметров

Рассчитанные весовые коэффициенты

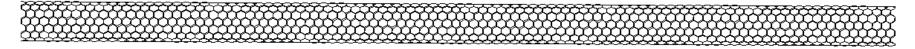
$$K_{\rm r} = 3.25 \cdot 10^2 \frac{\text{Дж}}{\text{м}^2}, K_{\theta} = 4.4 \cdot 10^{-19} \frac{\text{Дж}}{\text{рад}^2},$$


$$K_a = 4.0 \cdot 10^{-139} \frac{\text{Дж}}{\text{M}^{12}}, K_b = 1.5 \cdot 10^{-80} \frac{\text{Дж}}{\text{M}^6}.$$

Диаметры нанотрубок, измеренные и рассчитанные

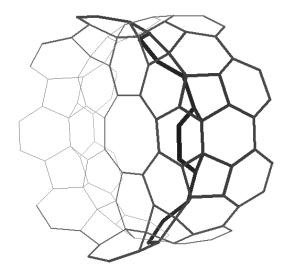

Трубка	Расчет для графено- вой модели, нм	Эксперимента льные данные, нм	Расчет с помощью RING-MD, нм	Теоретический расчет (полуэмпирическ ие модели, <i>ab initio</i>), нм
(4,0)	0,313	0,33	0,336	0,334; 0,317
(5,5)	0,678	_	0,685	0,69; 0,686
(8,8)	1,085	_	1,092	1,098
(10,10)	1,356	1,36	1,360	1,37
(17,0)	1,331	1,35	1,337	1,374
(18,0)	1,409	1,43	1,422	1,427

Модуль Юнга однослойных индивидуальных нанотрубок

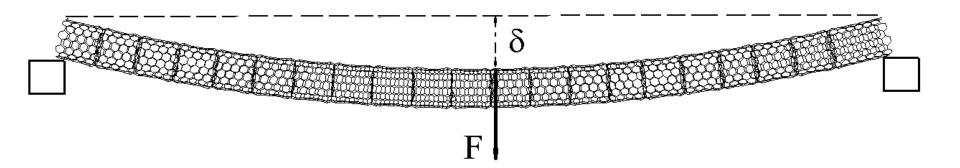


Эксперимент			Расчет с помощью RING-MD				
Диаметр, нм	Длина, нм	Модуль Юнга, ТПа	Тип трубки – число атомов	Диаметр, нм	Длина, нм	Модуль Юнга, ТПа	
4.40	22.4		(8,8) - 3072	1,09	23,45	0,82	
1,12	23,4	1,02	(14,0) – 3108	1,10	23,46	0,92	
4.50	24.2		(11,11) – 4378	1,50	24,3	0,90	
1,52	24,3	1,22	(19,0) – 4308	1,50	24,34	1,0	
1.50	26.0		(11,11) – 6600	1,50	36,77	1,1	
1,50	36,8	1,33	(19,0) – 6612	1,50	36,91	1,2	

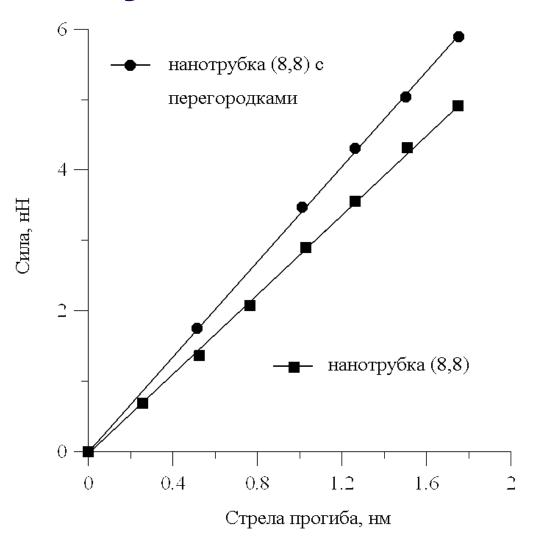
Исследование прочности УБНТ на изгиб


нанотрубка (8,8)

нанотрубка (8,8) с двадцатью перегородками



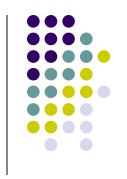
• Моделирование УБНТ: шаг перегородки 1,1 нм


Изгиб - 35 град. Приложенная сила равна 4,46 нН, стрела прогиба – 1,75 нм

Линейное возрастание силы F с увеличением смещения

Жесткость УНТ

$$k = \frac{F}{\delta}$$


- k = 2,8 H/м для УНТ (8,8) длиной 23,5 нм
- k = 3,4 H/м для УБНТ (8,8) с перегородками с шагом 1,1 нм

Выводы

- Бамбукоподобные нанотрубки длиной в несколько нанометров и диаметром 1нм (и больее) стабильны.
- Подобрав шаг перемычки можно добиться необходимых электронных свойств: снижения работы выхода, уменьшения энергетической щели и т.д. Для УНТ (10,10) такой шаг равен 1 нм.

Выводы

- Бамбукоподобные трубки превосходят трубки без перемычек по упругости в случае деформации растяжения и кручения.
- Модуль Юнга БУНТ составляет 2÷3 ТПа, в то время как модуль Юнга трубок без перемычек равен 1,3-1,5 ТПа.

• Углеродные однослойные нанотрубки стручкового типа можно характеризовать тенденцией быть прямыми.

УБНТ

- О.Е.Глухова, А.С.Колесникова, О.А.Терентьев *Теоретическое исследование упругости бамбукоподобных нанотрубок* // Физика волновых процессов и радиотехнические системы. 2008 № 2 (in press)
- О.А.Терентьев Кандид. дис. СГУ, Саратов, 2007, 152 с.
- О.Е.Глухова, А.С.Колесникова, О.А.Терентьев *Моделирование и теоретическое исследование бамбукоподобных углеродных нанотрубок* Межвузовский научный сборник "Вопросы прикладной физики". Издательство Саратовского университета, 2006г., стр. 86-88 (ISSN 0868-6238)
- О.Е.Глухова, А.С.Колесникова *Теоретическое изучение электронной структуры и механических свойств нанотрубок типа "бамбук"*. Сборник трудов «Нелинейные дни в Саратове для молодых».2006г., стр. 69-71
- О.Е. Глухова, А.С. Колесникова *Теоретическое исследование упругости бамбукоподобных нанотрубок*. Сборник тезисов XLV Международная научная студенческая конференция "Студент и научно-технический прогресс". 2007г., стр. 72